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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL NOTE NO. 1487
EFFECT OF ASPECT RATIO AND TAPER ON THE
PRESSURE DRAG AT SUPERSONIC SPEEDS OF
UNSWEPT WINGS AT ZERO LIFT

By Jack N. Nielsen

SUMMARY

The linear theory for determining the pressure distribution at
supersonic speeds on wings of symmetrical section at zero lift has
been used to calculate the pressure drag coefficients at zero lift
of the family of unswept, untwisted wings with the diamond profile.
On the basis of the method of R. T. Jones, which was presented in
NACA TN No. 1107, a general expression has been found for the drag
coefficient at any supersonic Mach number, aspect ratio, and taper.
The general expression, which is too unwileldy for use in analysis,
has been used in the construction of nondimensional charts permitting
a rapid estimation of the drag coefficlent for a given wing at any
Mach number. For wings of diamond or rectangular plan form the
general expression reduces to simple formulas for the drag coeffi~
cients. The nondimensional charts indicate that, at very low
aspect ratios, wings of diamond plan form have the least drag and
that increasing the ratio of tip chord to root chord increases
the drag markedly. However, at large aspect ratios rectangular
wings have the least drag and decreasing the ratio of tip chord
to root chord increases the drag slightly.

INTRODUCTION

Methods for determining the aerodynamic characteristics of
various aircraft components at supersonic speede have recently
become the subject of widespread attention. Of particular interest
are methods which permit determination of wing characteristice in
three—dimensional flow. OSubstantial progress in the development
of a theory for the three—dimensional supersonic wing has been
made by linearizing the problem on the basgis of small periurbation
theory. This makes pogsible the use of the superposition principle
and enables separation of the pressures acting on an uncambered
wing into (1) a pressure distribution due to thickmess which
occurs at zero angle of attack plus (2) a pressure distribtuion due
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to angle of attack which occurs on a flat plate of the wing plan
form at the wing angle of attack. The pressure distribution due
to thickness for thin symmetrical wings the suxrfaces of which are
formed by planes can be determined by the method of R. T. Jones
(reference 1). Essentially the method consists of orienting
oblique line pressure sources and obligque line pressure sinks of
different strengths in a manner to satisfy the boundary conditions
and then adding their pressure fields. An equivalent method has
been published by Puckett (reference 2).

The foregoing methods have been rather extensively applied to
wings of triangular plan form, but as yet only limited study of
the effects of changing plen form by varying aspect ratio, taper,
and sweep has been carried out. (Reference 3 is such a study.)
Accordingly in this report the method of Jones has been applied to
determining the pressure drag coefficient at zero lift of a family
of untwisted wings of diamond profile differing in aspect ratio and
taper. For all wings the line of maximum thickness, that 1s, the
mid—chord line, is unswept. Tapers from zero to unity have been
considered for all aspect ratios.

SYMBOLS
A aspect ratio
8 semispan, feet
c root chord, feet

Cp wing preassure-—drag coeffic ient

M free—stream Mach number

P local static pressure, pounds per square foot

Po free—stream static pressure, pounds per square foot
P-Po

P pressure coefficient ( )
9

free-stream dynsamic pressure, pounds per square foot

meximm thickness of wing section at root chord, feet

wing thickness ratio, fraction of chord, approximately equal
to tangent of semivertex angle of wing section measured in
streamvise direction ‘

9
S wing area, square feet
t
t
c
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A sweep angle of leading edge, radlans

e polar angle measured from downstreem direction, radians
o tan 6

T tan A

R.P. 1real part of a complex quantity

A wing taper, ratio of tip chord to root chord
Subscripts
a Jeading—edge sources
b midchord-line sinks
c tralling—edge sources
d leading-edge image sinks
e midchord-line image sources
ANALYSTS
Types of Wings

For the purpose of the analysis it has been convenient to
subdivide the wings under consideration into eight types as shown
in figure 1. From this figure it can be seen that certaln relation—
ships between aspect ratio and taper define boundaries which determine
the wing type. Along boundary III the leading and trailing edges are
coincident with thelr respective Mach lines., Above this boundary the
leading and trailing edges are swept in front of the Mach lines
emenating from their foremost points and are termed supersonic leading
and trailing edges. Below this boundary the leading and trailing
edges are swept behind their respective Mach lines and are termed
subsonic leading and trailing edges. This figure may be used for any

Mach number by using A,/ M2-1l, the effective aspect ratlo, in place
of the aspect ratlo.

In wings of type 1, the Mach lines all intersect the trailing
edges of the adjacent half wing. In wings of type 2, the Mach lines
from the extremities of the leading edges intersect the trailing

- edges of the opposite half wing, and the Mach lines from the leading
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vertex intersect the wing tips at a point between the midchord line
end the trailing edge. The differences between wings of other types
cen easily be seen in figure 1.

Determination of Wing Pressure Field

The wing pressure field can be built up by superimposing a number
of simple pressure fields which are basically of two types. These
types of pressure fields are those given by Jones in reference 1 for
a semi—infinite symmetrical wedge swept 1n front of or behind the Mach
line from its apex. .

For & semi—infinite symmetrical wedge with a supersonic leading
edge (fig. 2(a)) the pressure field 1s conical and for M =2 is
given by the following equation:

2 t/c _, tnA-tan®
P = R.P. cos (1)

e
ny1 ~ ten® A |1 - tan A tan 6 |

Between the leading edge vhere 6 + A= = and the Mach line where
tan 6 = 1 this equation reduces to 2

2 tfec
1l tan® A

P=

which is the Ackeret equation, as given by reference U, for the
pressure coefficient based on the Mach number component perpendicular
to the leading edge. The pressure falls from this value at the Mach
line where tan 8 =1 to O at the Mach line wvhere tan 6 = -1,

For & semi-infinite symmetrical wedge with & subsonic leading
edge (fig. 2(b)) the conical pressure field is given by the following
equation:

tan A— tan 6
% Jtan® A -1 |l—te.nAtan6|

(2)

The pressure coefficlent rises from zero at the near Mach line where
ten 0 = 1 to infinity at the leading edge end falls again to zero at
the far Mach line where tan 6 = —l.
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It 1s convenient to conslder the foregolng solutions for wedges
as sources or sinks depending on whether they produce positive or
negetive pressures. Thus when & flow is symmetrically diverged as
by a wedge, the changes in pressure are positive and can be considered
the result of a pressure source coincident with the leading edge of
the wedge. When a flow i1s symmetrically converged, &s when flowing
over the maximum thickness position of a diamond profile wing, the
changes in pressure are negative and cen be considered the result of
a pressure sink lying along the midchord line.

The pressure flelds of the sources and sinks which shape the
wing are added to glve the wing pressure field. From the leading
apex two sources are swept back along the leading edges to Infinity
producing wedge boundaries along their entire extent (fig. 3(a)). To
confine these wedge boundaries to the finite length of the leading
edges of the wing, two image sinks of equal and opposite magnitude
are superimposed onto the portions of the sources lying off the wing
(fig. 3(b)), thereby producing in part the effect of a tip. Two
semi-~infinite sinks are placed along the midchord line at right
angles to the flow, and two image sources are superimposed on thoae
portions of the sinks lying beyond the wing tips (fig. 3(c)). The
two image sources cambined with the two aforementioned imsge sinks
fully represent the effect of the tipas. To return the flow at the
trailing edge to its original direction, two sources (fig. 3(d))
are started at the extremities of the tralling edges and are extended
back along the trailing edges to infinity intersecting at the
trailing apex. The i1mages of the tralling-edge sources cannot have
any contribution to the wing pressures and need not be considered.

Wing Drag Coefficient
The contribution to the wing pressure drag of the pressure
field of each source and sink can be individually determined, and

the sum of the individual preesure drags will then be the total
drag. This may be expressed in coefficlent form as

Cp = Cp, * Op, * Cp, * Op, * Cp, (3)

vwhere the symbols have the following meanings:
Cpy drag coefficlent associated with the leading-edge sources
Cpb drag coefficient assoclaeted with the midchord-line sinks

ch drag coefficient assoclated with the trailing-edge sources
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CDd drag coefficient associated with the leading-edge image sinks
CD° drag coefficient associated with the midchord—line Image

sources

The derivation of the drag coefficients is performed for a wing
of type 8, because the results for this wing type can be reduced to
include every other wing type as a special case. No loss of
generality is incurred by restricting the analysis to M2=2 as
will be subsequently explained.

The actual determinations of Cpys CDys Cp, s Cpy- and Cpe

are carried out in Appendix A. The expressions for these drag coeffi-
cients are given in terms of T, the tangent of the leading-edge

sweep angle, and -g-,_ the ratio of the semispan to the root chord. For
a given value of aspect ratio and taper, the values of T and -g-
are determined from the following expressions:

- 2(1=N)
A(1+))

)
s _ (1+NA
s =1

RESULTS AND DISCUSSION
Design Charts

Because the equations are too long to be very useful for direct
computation of the drag coefficlents, detailed calculations have been
undertaken to determine drag charts based on these equations. Although
the analysis and calculations have been performed for M2= 2, the
drag charts have been generalized, &as subsequently discussed, to be
valid for all supersonic Mach numbers.

A given wing operating at M2>2 or M2<2 may be converted to
an equivalent wing at M2= 2 by changing its lateral dimensions by

the factors/ M2-1 and holding the thickness ratio constant. The

effective aspect ratio of the equivalent wing is AJW¥=T, dut its
taper is the seme as that of the given wing. During the lateral
expansion or contraction the relative positions of the Mach lines
and the wing are unchanged, and the pressure coefficients computed
for the equivalent wing at MP=2 will bear a point-to—point
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correspondence with the pressure coefficlents for the glven wing at
M2>2 or Me<2, However, the pressure coefficlents and the drag
coefficients for the equivalent wing must be divided by Jﬁa—l to
convert them back to the given wing. From these congiderations it

follows that plotting Cp N7 against A»/M2-l for any taper
will give a chart which i1s applicable to all supersonic Mach numbers.

The drag coefficients, Cpys CDyps CDc’ (}Dd and cDe have

all been calculated for M2=2 and then have been added to give Cp,
the wing drag coefficlent. Drag charts have then been constructed

Cp
&)z
aspect ratio, for various tapers. The drag chart for
0SA/M2-151.8 18 given in figure 4(a) and the drag chart for
1.8<4 / M21<5.4 1g given in figure 4(b).

to give MBI as a function of AW M2-1, the effective

An examination of figure 4 reveals several points of interest.
For any Mach number greater than unity, the drag coefficient decreases
toward zero as the aspect ratio decreases toward zero. Also, &s would
be expected the drag coefficlents approach the sectlion drag coeffi-

2

cient E(—EZEL- as the aspect ratio increases toward infinity. The
N ey

figure also shows that the effect of taper 1s generally greater at

small effective aspect ratios than at large effectlve aspect ratlios.

Figure 4 also reveals the following information: The curves
of drag-coefficient parameter as a function of effective aspect
ratio are continuous for all tapers. However, all the curvee have
discontinuities in slope except the curve for A =1, The
discontinuities in slope occur when the leading and trailing edges
are coincident with their Mach lines, and correspond to conditions
given by line III of figure 1. Slight decreases in effective aspect
ratios below those for this condition correspond to subsonic leading
and trailing edges and are accompanied by a rapid decrease in the
drag coefficient, particularly for small tapers. The wing having the
greatest drag coefficient is the wing of zero taper and effective
aspect ratio 2; that is, the wing with the leading edge parallel
to the Mach lines, This wing has a drag coefficient only asbout
15 percent greater than the section drag coefficient. Below an
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effective aspect ratio of 1.75, wings of diamond plan form have the
least drag; above this effective aspect ratlo rectangular wings have
the least drag.

As en example in the use of these charts to determine the wing
drag coefficient, consider a wing of aspect ratio 2, taper 0.5, and
of thickness 0.1 (same as semiwedge angle in radians for thin wings)

flying at M = 1,3. Since AWMZ1 = 1.662, figure h(a) gives

_(%])?? M1 = 4.23. Thus Cp = (0.1)2 (1.204) (4.23) = 0.051.
c

It can be noted that the drag curve for the dlamond plan-form
wing may be used for wings incorporating a flat lower surface and
an i\.sosceles trianguler section if the effective agpect ratio is
greater than two. For such a wing with no tip and supersonic leading
edges, the upper— and lower—surface pressures are independent so that
the drag for the wing of isosceles triangular section is Just helf
the drag for the wing of the same plan form, the section of which 1s
a diamond formed by two of the isosceles triangles.

Megnitude of Individual Drag Coefficients for Wings
of Rectangular end Diamond Plan Form

The general formulas for the individual drag coefficients have
been reduced to their particular forms for rectengular wings, and
the results are given in Appendix B. The ratios of the individual
dreg coefficients to thickness ratlo squared as functions of aspect
ratio are given in figure 5(a) for M=2. The leading-edge sources
produce uniform pressure over both front and rear surfaces and thus
have no contribution to the drag. The ridge sinks account for a
drag coefficient Cpy equal to the section drag coefficlent at

all Mach numbers, which accounts for most of the wing drag.

From figure 5(a) it may also be seen that, above an aspect
ratio of unity, CDd the drag assoclated with the leading—edge

image sinks is Just offset by CDe the thrust associated with the

midchord—line image sources. Thus the tip does not affect the net
wing drag although it does affect the spanwise distribution of the
drag near the tips. Since the tip contributes no drag to the wing
at aspect ratios greater than 1.0, the wing drag coefficient is
independent of aspect ratios in this range and must be equal to the
section drag coefficient.
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For aspect ratios less than 1.0 the tip affects the wing drag
in a manner such that the drag is reduced because the negative drag
asgoclated with the midchord-line image sources more than offsets
the positive drag associated with the leading-edge image sinks.,
When the aspect ratio approaches zero, the thrust of the images is
sufficient to overcome the drag associated with the midchord line,
so that the drag coefficient also approeches zero.

Also in Appendix B the general formulas for the individual drag
coefficients have been reduced to their particular form for wings of
diamond plan form. These results have been used as the basis for
figure 5(b) wherein the values of the ratio of the individual drag
coefficlents to the thickness ratio squared have been given as &
function of aspect ratio for Me=2,

With reference to figure 5(b), it can be seen that for aspect
ratios greater than 2.0 the drag associated with the leading-edge
sources 1s additive to that assoclated with the midchord line to
make the wing drag coefficlient greater than the section drag coeffi-
clent. For aspect ratios less than 2.0 the wing drag coefficient
falls with decreasing aspect ratio as the result of several effects.
First, the tralling edges of the wing are now subsonic and the
positive pressures due to the trailing-edge sources extend onto the
ving rear surfaces and act to decrease the drag. Second, the effect
of the tip is to decrease the drag since the thrust associlated with
midchord image sources 1s greater than the drag assoclated with the
leading-edge image sinks. Finally, the drag assoclated with the
leading—edge sources decreases because the sweep of the sources
increases as the aspect ratio becomes smaller.

The tip drag is represented by the difference between the
drag assoclated with the leading-edge image sinks and the midchord-—

line image sources. For a rectangular wing with A ME-T>1

the drags ldentically cancel each other so that the tip drag is
zero. This result is also true for other taper ratios as long as
the Mach lines of the images intersect the trailing edge of their
own half wing., It has also been found in other calculatlions not
rresented in this report that for tapered and untapered swept wings
with & diamond profile and tips cut off in the stream direction the
drag of the tip 1s zero, provided that the tip of one half wing
does not affect the opposite half wing.

Variation of Drag Coefficient with Mach Number
Using the drag charts of figure 4, the variation with Mach

2
number of Cp/ <§) has been determined for rectangular wings
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of several aspect ratios and the results are presented in figure 6(a).
The results show that for a given Mach number there exists a certain
aspect ratio above which all rectangular wings have drag coeffi-—
clents equal to the section draeg coefficient. Thus all rectangular
wings of aspect ratio greater than unity have the section drag
coefficient at a Mach number greater than l.4l. At Mach numbers

near unity very low-aspeci~ratio wings gshow some reduction in drag
compared with wings of higher aspect ratio.

The variation with Mach mumber Cp/ <-:—>2 has also been

determined for wings of diamond plan form of several aspect ratios,
and the results are presented in figure 6(b). The results show
that considerable drag reduction is to be realized at Mach numbers
near unity by reducing the aspect ratio.

CONCLUSIONS

The following conclusions may be drawn from the analysis within
the limits of first—order theory; that is, insofar as the disturbance
velocities are small and the effect of viscosity may be neglected.

1. Below an effective aspect ratio of 1.75, wings of diamond plan
form have the least drag; above this effective aspect ratio rectangular

wings have the least drag.

2. At very low effective aspect ratios, increasing the ratio
of tip chord to root chord increases the drag coefficient markedly,
but at large effective aspect ratios increasing the ratio of tip
chord to root chord slightly decreases the drag coefficient.

3. Rectangular wings of effective aspect ratio greater than
unity have a drag coefficlent equal to the section drag coeffi-

clent.

L. For wings the tip Mach lines of which intersect the
trailing edges on their own half wing, the tip effect does not
change the net drag but changes only the distribution of the drag.

5. With decreasing effective aspect ratio for & glven taper
there is & sudden decrease in drag coefficlent as the leading and
trailing edges pass through the Mach cones.

6. At low effective aspect ratios the drag coefficient
decreases with effective aspect ratio.

Ames Aeronsutical Laboratory,
National Advisory Committee For Aeronautics,
Moffett Field, Calif.

»
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APPENDIX A
DETERMINATTION OF INDIVIDUAL DRAG COEFFICIENTS
Leading—edge Sources
Considering first the leading-edge sources, figure 3(a) shows
the five areas of the half wing over which their pressure flelds
must be integrated to determine the drag coefficient Cpg. Since
there are two half wings and two sides to each half wing, and since

the front surface is inclined at +t/c radians to the flow and the
rear surface 1s inclined at -t/c radians to the flow

scDa=h Pa(>as1+uf Pa<>dsg+l+ Pa<>dsa
ot O

Considering both leading—edge sources, the pressure coefficient 1s
‘given by equation (2) as follows:
b

2t/c pt
Pa=RPl {
37 -1

The differential areas taken as small triangles from the apex or as
differences of the triangles are as follows:

T—0
1-To

-1
+ cosh

l+To

2
d81 Sgé—
das 3.03
278
dss"é"z}'dﬂ (A3)
82 c2
dSy = —— 40 — — do
t 22 8
2 2
Y Y a  ay
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Substituting from equations (A2) and (A3) into equation (Al),
putting in the limits shown in figure 3(a), and simplifying
gives the following result?

1
?
8 - |7
+ 20— [cosh 1 |T+0 | + cosh™? |T=2 ]Q'g-
c2dg 1l+7g 1-To a®
c
o8
2 c + T
-5 [cosh'l TI01 4 cosh™? = ]9_{
ce L8 1+7o 1-tg | 402
c—8 T

- [T—0 do
+ cosh * e ] T } (ak)

-2 / O-BT[ cosh * o
o 1+To

Carrying out the integration, collecting similar terms, and making
the following substitution for the wing area S =2 8¢ (1-s 1/c)
gives the drag coefficient.
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2
L <g [
. Cp, = R.P. c> B> { T_r—l sin™ (28/c)
nfr 2-1(1-st/c)
. (1+2s 1/c)? cosh’l\: ™28 /c ]_ (1-est/c)? cosh—'l[ —28/c ]
T 1+2s T/c T 1-2s8T/c
+ (1-372) +h(r22)sr/c cosh™ [ r—s(r2-1) /c]
(1)
+ (12st/c)? cosh™2 [T—S(T2+l)zc 1 _ 2(272-1) cosh~ ! T
T - 1-2st/e T(72-1)
.2 2./ (1-s1/c)2~(s/c)? _ ke?r cosh1 ﬂ)} (5)
. Jra = = 2T

Midchord-line Sinks

A simple expression can be derived for the drag coefficlent

associated with the pair of sinks along the midchord line.

From

equation (1) the pressure drop for the flow deflected through an

angle -2 <§> by the esinks is

Pp = - i——@%—)— {cos‘l (~o) + cos™} (a)] = - L <-§-> (46)

Since the pressure coefficlent actis uniformly over the upper and

lower rear surfaces to cause drag,

t 2
om = (5)

(A7)
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Trailing—-edge Sources
The sources along the trailling edges (fig. 3(d)) act always
to decrease the drag as their positive pressure field may act only

on the rear surface of the wing. The drag coefficilent 1s glven by
the following equation:

S Cp, = — f P, ({j-) és, (a8)
S

The pressure coefficient for one source from equation (2) is

2t/c
P, = R.P. 7L (a9)
f ./ =) 1-T0
and the differentiel area is
do
as = 28272 — (A10)

Substituting from equations (A9) and (A1l0) into equation (A8),
carrying out the integration, and simplifying gives the drag coeffli-

clent

Leading-edge Immge Sinks

The imege sinks asssociated with the leading-edge sources produce
pressures on the wing which tend to increase the wing drag. Referring
to figure 3(b), the drag coefficient can be written as follows:

SCDd=h/ Ps @-)ds;—hf Pd(%)dﬁz—hf Pd_(g'—)dS:y
S1 S2 Sga
- uf Py <§> dS4 + k / Py <—c'°-> dSs (A11)
Sa Ss
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The differential areas are given by the following equations:

)\2c2

as, = do
1778
N2 do A2c2
d.Sz = ° 2 - dU
2  (1-70) 8
2.2
a5 =L 4o N, (a12)

3 2 (+10)2 8

. do 222
2
dS4 = 28 ;—2— -— 8 do
- 2 do
aS, = 28 o——-z

The pressure coefficient can be obtained by an application of
equation (2).

Pg = — R.P. 2 8/0 cogyt | -1¢a (A13)
121 1+70

Substituting from equations (Al2) and (Al3) back into equation (All),
putting in the limits shown in figure 3(b), and simplifying gives
the drag coefficient.

N2
t
2 (<2 )c?
S 2 bs - |THo
S Cpy = R.P. —Q [—- 7\1;_291 cosh > 1
n Tl +T0

15

2.8 T+0 do .28 - T+0
+ 2N/ cgT cosh™l l + 2 T cosh™ do
o +710! (1—7o) 8 l+ro! QL +1o"
c—8T
8g2 +8 8g2 1
8 — |T+o -
+ —-—-fc-:aS'r cosh™ |TF9 i do _Ei_:/ﬂ cosp—t ( Tte \do
c2J g l+tol 02 2 1+70/ g2
c—28T c—28T
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Carrying out the integration, collecting similar terms, and
substituting S = 2sc(l-st/c) gives the drag coefficient.

<1c;'>2 <§'> {_ (1+287/c)2 o [.,._28 (1-2_2)/0:‘
T

CD = R.P.
a n :/"'2—1 (1-s 7/c) 1+2s7/c

2 _ 2
_ (1-2s1/c) 5T gin Ls/c B (1-2s1/c) cosHY T
T

1-28T/c T

. [(3:2-1)+hsT(—®) fc] . (v-8(12-1) [c]
T (r3-1)

T 1l-28T/c

+ _gl_-_z_s_ﬁf_ cosh™2 [‘T—B (r2+1) c:l

e [—4s (t3-1) /e ] cost™? [1 —2s (12-1) [c ] + 2 4/(—l—¢’és-r/c)z—(Exs/c:)2

(x%-1) | Vel

2~ (L y2—(s/c)2 | 1682 _y (1-2sT/c
- --ts-r/:z--l sfc)2 | e /~2_1 cosh 1<’+sc )

- %-:f: T2_] cosh* <¥T-§:—;cﬁ> } (A15)
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Midchord—line Image Sources

The image sources associated with the midchord-line produce positive
pressures on the rear surfaces of the wing and tend to reduce the drag.
Referring to figure 3(c), the drag coefficient cen be written as follows:

SCDe=—h\/S‘1Pe<-§>dsl—h‘/§;2Pe<§>d32—h/;3Pe<§>dss (a16)

The differential aress can be written as follows:

as, = A2c2 ‘do'
8 (Qmty)?
c2 2
= = (142 Al
asz = ¢ (1+2s7/c) e (ALT)
= pg2 40
d.SS 28 02

The pressure coefficient may be obtained by an application of equation ().

Py = 28C cosm1 (g) (a18)
x

Substituting from equations (Al7) and (Al8) into equation (Al6), putting in
the limits shown in figure 3(c), and simplifying gives the drag coeffi-
cient.

2
2 ((1;) c® 28
S CD0 = — R.P, -———-——-—-[ 7\2‘41 008_1 (0’) -(—lg!;-)—z
n a1

48

h i
+ raarfe)® [T o (o) L L HE o (o) 2
g

+Tg)2 2
28 (m)2 o e

(a19)



18 NACA TN Ro. 1487

Carrying out the integration, collecting gimilar terms, and making the

substitution, S = 2sc(l-sT/c), gives the drag coefficient.

{ % cos™1 (28/c)

_n(1-2s7/c)2 (1-281T/c)? cosh—l[ T2s/c ]
2T T, /T 1-2s7/c

- ___L——(l"QST c)® cosh™ V'r - (1-es7/c)2 cos™l [—E-Lc—-]
/Tl T :

2
4 (1+287c)® - [?—28(72—2)[0 ]
T/T4-1 1+2sT/c

(1+2s7c)® <-r+2s/c4 ) 1682 _ [1—251'/0 :] }
- = cosh™1 - cosh™1 | e
Ty 1+2s 1/c c2 ks/c

| (420)



NACA TN No. 1487 19

APPENDIX B

REDUCTION OF GENERAL EQUATIONS FOR WINGS OF
RECTANGULAR AND DIAMOND PIAN FORM

The general formulas for the indlvidual drag coefficient can be
considerably simplified for wings of rectangular or diamond plan form.
For the rectangular plan form the formulas are simplified by determin—
ing the limiting values of the drag coefficlents as T, the tangent
of the leading-edge sweepback angle, approaches zero since the formulas
are Indeterminate for 7= 0, The actual limiting process 1s lengthy
and only the results are given here,
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Summing the component drag coefficients and meking the substitutlon
A= 25/0 gives the wing drag coefficient in terms of the aspect ratio.
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Inspection of equation (B2) shows that the first term is real for all
aspect ratios, that the next three terms are real only for agpect ratios
less than unity, and that the last three terms are real only for aspect
ratios less than one-half,

In simplifying the general formulas for wings of diamond plan form
it is sufficient to substitute the condition for zero taper T = c/Es,
gince the formulass are determinate for this case. The following results

have been obtalned.
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Summing the component drag coefficients and making the substitution
A = 2/ glves the following formula for the drag coefficlent of &
diamond plan—form wing:
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When the leading edges of the wing are swept behind the Mach cone,
T>1 and A<?2 so that all terms of equations (B3) and (B4) are real.
However, for leading edges in front of the Mach cone where T <1 and
A>?2, use must be made of the following relationship to 1ind the real
part of equations (B3) and (BY4):
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The resulting equations for the component drag coefficients and wing
drag coefficient are &as follows:
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